FEATURES:

- Ref input is 3.3 V tolerant
- 8 pairs of programmable skew outputs
- Low skew: 185ps same pair, 250ps same bank, 350ps both banks
- Selectable positive or negative edge synchronization on each bank: excellent for DSP applications
- Synchronous output enable on each bank
- Input frequency: 2 MHz to 160 MHz
- Output frequency: 6 MHz to 160 MHz
- 3-level inputs for skew and PLL range control
- 3-level inputs for feedback divide selection multiply / divide ratios of $(1-6,8,10,12)$ / $(2,4)$
- PLL bypass for DC testing
- External feedback, internal loop filter
- 12mA balanced drive outputs
- Low Jitter: <100ps cycle-to-cycle
- Power-down mode on each bank
- Lock indicator on each bank
- Available in BGA package

DESCRIPTION:

The IDT5T9955 is a high fanout 2.5V PLL based clock driver intended for high performance computing and data-communications applications. A key feature of the programmable skew is the ability of outputs to lead or lag the REF input signal. The IDT5T9955 has sixteen programmable skew outputs in eight banks of 2. The two separate PLLs allow the user to independently control A and B banks. Skew is controlled by 3-level input signals that may be hard-wired to appropriate high-mid-low levels.

The feedback input allows divide-by-functionality from 1 to 12 through the use of the xDS[1:0] inputs. This provides the user with frequency multiplication from 1 to 12 without using divided outputs for feedback.

When the x $\overline{\mathrm{SOE}}$ pin is held low, all the xbank outputs are synchronously enabled. However, if $x \overline{\operatorname{SOE}}$ is held high, all the xbank outputs except $\times 2 \mathrm{Q} 0$ and x 2 Q 1 are synchronously disabled. The xLOCK output is high when the xbank PLL has achieved phase lock.

Furthermore, when xPE is held high, all the outputs are synchronized with the positive edge of the REF clock input. When xPE is held low, all the outputs are synchronized with the negative edge of REF. The IDT5T9955 has LVTTL outputs with 12 mA balanced drive outputs.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

FPBGA
TOP VIEW
96 BALL FPBGA PACKAGE ATTRIBUTES
1.5mm Max.
1.4 mm Nom.
1.3 mm Min.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

NOTE:

1. Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\right)$

Parameter	Description		Typ.	Max.	Unit
CIN	InputCapacitance	REF	8	10	pF
		Others	5	7	

NOTE:

1. Capacitance applies to all inputs except $\operatorname{TEST}, \mathrm{xFS}, \mathrm{xnF}[1: 0]$, and $\mathrm{xDS}[1: 0]$.

PIN DESCRIPTION

Pin Name	Type	Description
REF	IN	Reference ClockInput
xFB	IN	Individual Feedback Inputs for A and B banks
TEST ${ }^{(1)}$	IN	When MID or HIGH, disables PLL for A and B banks (except for conditions of Note 1). REF goes to all outputs. Skew Selections (See Control Summary Table) remain in effect. Set LOW for normal operation.
$x \overline{S O E}^{(1)}$	IN	Individual Synchronous Output Enable for A and B banks. When HIGH, it stops clock outputs (except x2Q0 and x2Q1) in a LOW state (for xPE $=\mathrm{H}$) - x2Qo and x2Q1 may be used as the feedback signal to maintain phase lock. When TEST is held at MID level and $\overline{\text { sOE }}$ is HIGH, the $\mathrm{nF}[1: 0]$ pins act as output disable controls for individual banks when $\mathrm{xnF}[1: 0]=\mathrm{LL}$. Set xSOE LOW for normal operation (hasinternal pull-down).
xPE	IN	Individual Selectable positive ornegative edge controlforA and B banks. WhenLOW/HIGHthe outputs are synchronized withthe negative/ positive edge of the reference clock (has internal pull-up).
$\mathrm{xnF}[1: 0]$	IN	3 -level inputs for selecting 1 of 9 skew taps or frequency functions
xFS	IN	Selects appropriate oscillator circuit based on anticipated frequency range. (See Programmable Skew Range.) Individual control onA and B banks.
xnQ[1:0]	OUT	Eight banks oftwo outputs with programmable skew
xDS[1:0]	IN	3-level inputs for feedback divider selection for A and B banks
$x \bar{P} \bar{D}$	IN	Power down control. Shuts off either A or B bank of the chip when LOW (has internal pull-up).
xLOCK	OUT	PLL lock indication signal for A and B banks. HIGH indicates lock. LOW indicates that the PLL is not locked and outputs may not be synchronized tothe inputs.
VDDQ	PWR	Power supply for output buffers
VDD	PWR	Power supply for phase locked loop, lock output, and other internal circuitry
GND	PWR	Ground

NOTE:

1. When TEST = MID and $x \overline{S O E}=$ HIGH, PLL remains active with $x n F[1: 0]=\operatorname{LL}$ functioning as an output disable control for individual output banks. Skew selections remain in effect unless $\mathrm{xnF}[1: 0]=\mathrm{LL}$.

PROGRAMMABLESKEW

Output skew with respect to the REF input is adjustable to compensate for PCB trace delays, backplane propagation delays or to accommodate requirements for special timing relationships between clocked components. Skew is selectable as a multiple of a time unit (tu) which ranges from 782ps to 1.5625 ns (see Programmable Skew Range and Resolution Table). There are nine skew configurations available for each output pair. These configurations are chosen by the $\mathrm{xnF} 1: 0$ control pins. In

EXTERNALFEEDBACK

By providing two separate external feedbacks, the IDT5T9955 gives users flexibility with regard to skew adjustment. The xFB signal is compared with the input REF signal at the phase detector in order to drive the VCO. Phase differences cause the VCO of the PLL to adjust upwards or downwards accordingly.
order to minimize the number of control pins, 3-level inputs (HIGH-MIDLOW) are used, they are intended for but not restricted to hard-wiring. Undriven 3-level inputs default to the MID level. Where programmable skew is not a requirement, the control pins can be left open for the zero skew default setting. The Control Summary Table shows how to select specific skew taps by using the $\mathrm{xnF} 1: 0$ control pins.

An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.

PROGRAMMABLE SKEW RANGE AND RESOLUTION TABLE

Timing Unit Calculation (tu)	xFS = LOW	xFS $=$ MID	xFS $=$ HIGH	Comments
	$1 /(32 \times$ FNom)	1/(16 x FNom)	1/(8x FNom)	
VCO Frequency Range(Fnom) ${ }^{(1,2)}$	24 to 40MHz	40 to 80MHz	80 to 160MHz	
Skew Adjustment Range ${ }^{(3)}$ MaxAdjustment:	$\pm 7.8125 \mathrm{~ns}$	$\pm 9.375 \mathrm{~ns}$	$\pm 9.375 \mathrm{~ns}$	ns
	$\pm 67.5^{\circ}$	$\pm 135^{\circ}$	$\pm 270^{\circ}$	PhaseDegrees
	$\pm 18.75 \%$	$\pm 37.5 \%$	$\pm 75 \%$	\% of Cycle Time
Example 1, Fnom $=25 \mathrm{MHz}$	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	-	
Example 2, FNom $=37.5 \mathrm{MHz}$	$\mathrm{tu}=0.833 \mathrm{~ns}$	-	-	
Example 3, Fnom $=50 \mathrm{MHz}$	-	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	
Example 4, Fnom $=75 \mathrm{MHz}$	-	$\mathrm{tu}=0.833 \mathrm{~ns}$	-	
Example 5, FNom $=100 \mathrm{MHz}$	-	-	$\mathrm{tu}=1.25 \mathrm{~ns}$	
Example 6, FNom $=150 \mathrm{MHz}$	-	-	tu $=0.833 \mathrm{~ns}$	

NOTES:

1. The device may be operated outside recommended frequency ranges without damage, but functional operation is not guaranteed.
2. The level to be set on xFS is determined by the nominal operating frequency of the VCO and Time Unit Generator. The VCO frequency always appears at $\times 1 \mathrm{Q} 1: 0, \mathrm{x} 2 \mathrm{Q} 1: 0$, and the higher outputs when they are operated in their undivided modes. The frequency appearing at the REF and XFB inputs will be Fnom when the output connected to $x F B$ is undivided and $\mathrm{xDS}[1: 0]=\mathrm{MM}$. The frequency of the REF and xFB inputs will be Fnom $/ 2$ or Fnom $/ 4$ when the part is configured for frequency multiplication by using a divided output as the XFB input and setting $\mathrm{xDS}[1: 0]=\mathrm{MM}$. Using the $\mathrm{xDS}[1: 0]$ inputs allows a different method for frequency multiplication (see Divide Selection Table).
3. Skew adjustment range assumes that a zero skew output is used for feedback. If a skewed $x Q$ output is used for feedback, then adjustment range will be greater. For example if a 4tu skewed output is used for feedback, all other outputs will be skewed -4tu in addition to whatever skew value is programmed for those outputs. 'Max adjustment' range applies to output pairs 3 and 4 where ± 6 tu skew adjustment is possible and at the lowest Fnom value.

DIVIDE SELECTION TABLE

XDS [1:0]	xFB Divide-by-n	Permitted Output Divide-by-n connected to xFBIN ${ }^{(1)}$
\amalg	2	1 or 2
LM	3	1
LH	4	1,2, or 4
ML	5	1 or 2
MM	1	1,2, or 4
MH	6	1 or 2
HL	8	1 or 2
HM	10	1

NOTE:

1. Permissible output division ratios connected to XFB . The frequency of the REF input will be FNom/N when the part is configured for frequency multiplication by using an undivided output for xFB and setting $\mathrm{xDS}[1: 0]$ to $\mathrm{N}(\mathrm{N}=1-6,8,10,12)$.

CONTROL SUMMARY TABLE FOR FEEDBACK SIGNALS

xnF1:0	Skew (Pair \#1, \#2)	Skew (Pair \#3)	Skew (Pair \#4)
LL ${ }^{(1)}$	-4tu	Divide by 2	Divide by 2
LM	-3tu	-6tu	-6tu
LH	-2tu	-4tu	-4tu
ML	-1tu	-2tu	-2tu
M M	Zero Skew	Zero Skew	Zero Skew
M H	1tu	2 tu	2 tu
HL	2 t	4tu	4tu
HM	3 tu	6 tv	6 tu
HH	4tu	Divide by 4	Inverted ${ }^{(2)}$

NOTES:

1. LL disables outputs if TEST $=$ MID and $x \overline{S O E}=H I G H$.
2. When pair \#4 is set to HH (inverted), $x \overline{\mathrm{SOE}}$ disables pair \#4 HIGH when $\mathrm{xPE}=\mathrm{HIGH}, \mathrm{x} \overline{\mathrm{SOE}}$ disables pair \#4 LOW when $\mathrm{xPE}=$ LOW.

RECOMMENDEDOPERATING RANGE

Symbol	Description	Min.	Typ.	Max.	Unit
VDD/VDDQ	Power Supply Voltage	2.3	2.5	2.7	V
TA_{A}	AmbientOperatingTemperature	-40	+25	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Conditions ${ }^{(1)}$	Min.	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH (REF, xFB Inputs Only)	2	-	V
VIL	InputLOWVoltage	Guaranteed Logic LOW (REF, xFB Inputs Only)	-	0.7	V
VIHH	Input HIGH Voltage ${ }^{(2)}$	3-Level Inputs Only	VDD-0.4	-	V
Vimm	Input MID Voltage ${ }^{(2)}$	3-Level Inputs Only	Vod/2-0.2	Vod/2+0.2	V
VILL	InputLOW Voltage ${ }^{(2)}$	3-Level Inputs Only	-	0.4	V
IIN	InputLeakageCurrent (REF, xFB Inputs Only)	$\begin{aligned} & \text { VIN }=\text { VDD or GND } \\ & \text { VDD }=\text { Max. } . \end{aligned}$	-5	+5	$\mu \mathrm{A}$
13	3-Level Input DC Current (TEST, xFS, xnF[1:0], xDS[1:0])	VIN = VDD \quad HIGH Level	-	+400	$\mu \mathrm{A}$
		VIN $=$ Vod/2 MID Level	-100	+100	
		VIN $=$ GND LOW Level	-400	-	
IPU	Input Pull-Up Current (xPE, x $\overline{\text { PD }}$)	VDD $=$ Max., VIN = GND	-25	-	$\mu \mathrm{A}$
IPD	Input Pull-Down Current (x)	$V_{D D}=$ Max., $\mathrm{VIN}^{\text {I }}$ = V_{DD}	-	+100	$\mu \mathrm{A}$
Vor	Output HIGH Voltage	$V_{D D}=$ Min., IOH $=-2 \mathrm{~mA}$ (xLOCK Output)	2	-	V
		$\mathrm{V}_{\text {DDQ }}=$ Min., $\mathrm{IOH}=-12 \mathrm{~mA}$ (xnQ[1:0] Outputs)	2	-	
Vol	OutputLOWVoltage	VDD $=$ Min., IoL $=2 \mathrm{~mA}$ (xLOCK Output)	-	0.4	V
		VDDQ $=$ Min., IoL $=12 \mathrm{~mA}$ (xnQ[1:0] Outputs)	-	0.4	

NOTES:

1. All conditions apply to A and B banks.
2. These inputs are normally wired to VDD, GND, or unconnected. Internal termination resistors bias unconnected inputs to Vdd/2. If these inputs are switched, the function and timing of the outputs may be glitched, and the PLL may require an additional tlock time before all datasheet limits are achieved.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter		TestConditions ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max.	Unit
IDDQ	Quiescent Power Supply Current	$\begin{aligned} & \text { VDD }=\text { Max., TEST }=\text { MID, REF }=\text { LOW, } \\ & \text { xPE }=\text { LOW, x } \overline{S O E}=\text { LOW, x } \overline{P D}=H I G H \\ & \text { FS }=\text { MID, All outputs unloaded } \end{aligned}$		40	60	mA
IDDPD	Power Down Current	$\begin{aligned} & \text { VDD }=\text { Max., x } \overline{P D}=\text { LOW, } x \overline{\mathrm{SOE}}=\mathrm{LOW} \\ & \mathrm{xPE}=\mathrm{HIGH}, \mathrm{TEST}=\mathrm{HIGH}, \mathrm{xFS}=\mathrm{HIGH} \\ & \mathrm{xnF[1:0]}=\mathrm{HH}, \mathrm{xDS}[1: 0]=\mathrm{HH} \end{aligned}$		-	50	$\mu \mathrm{A}$
$\Delta I D D$	Power Supply Current per Input HIGH (REF and xFB inputs only)	$\begin{aligned} & \text { VIN }=2.3 \mathrm{~V}, \mathrm{VDD}=\mathrm{Max} ., \mathrm{x} \overline{\mathrm{PD}}=\mathrm{LOW} \\ & \mathrm{TEST}=\mathrm{HIGH} \end{aligned}$		1	60	$\mu \mathrm{A}$
IDDD	Dynamic Power Supply Current per Output	xFS $=\mathrm{L}$		190	290	$\mu \mathrm{A} / \mathrm{MHz}$
		xFS = M		150	230	
		xFS $=\mathrm{H}$		130	200	
Ітот	Total Power Supply Current	xFS $=\mathrm{L}$	Fvco $=40 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	98	-	mA
		xFS $=$ M	Fvco $=80 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	132	-	
		xFS = H	Fvco $=160 \mathrm{MHz}, \mathrm{CL}=0 \mathrm{pF}$	206	-	

NOTES:

1. Measurements are for divide-by-1 outputs, $\mathrm{xnF}[1: 0]=\mathrm{MM}$, and $\mathrm{xDS}[1: 0]=\mathrm{MM}$. All conditions apply to A and B banks.
2. For nominal voltage and temperature.

INPUT TIMING REQUIREMENTS

Symbol	Description ${ }^{(1)}$		Min.	Max.	Unit
tr, tF	Maximum input rise and fall times, 0.7 V to 1.7V		-	10	ns/V
tPWC	Input clock pulse, HIGH or LOW		2	-	ns
DH	Input duty cycle		10	90	\%
Fref	Referenceclockinputfrequency	xFS = LOW	2	40	MHz
		xFS = MID	3.33	80	
		xFS $=$ HIGH	6.67	160	

NOTE:

1. Where pulse width implied by Dh is less than tpwc limit, tpwc limit applies.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Min.	Typ.	Max.	Unit
FNom	VCO Frequency Range	See Programmable Skew Range and Resolution Table			
tePWH	REF Pulse Width HIGH ${ }^{(1)}$	2	-	-	ns
trPWL	REF Pulse Width LOW ${ }^{(1)}$	2	-	-	ns
tu	Programmable Skew Time Unit	See Control Summary Table			
tSkEWPR	Zero Output Matched-Pair Skew ($\mathrm{xnQ0} 0, \mathrm{xnQ1})^{(2,3)}$	-	50	185	ps
tSkEwo	Zero OutputSkew (All Outputs) ${ }^{(4)}$	-	0.1	0.25	ns
tskewb	Bank Skew ${ }^{(5)}$	-	0.1	0.35	ns
tSkEW1	Output Skew (Rise-Rise, Fall-Fall, Same Class Outputs) ${ }^{(6)}$	-	0.1	0.25	ns
tskew2	OutputSkew (Rise-Fall, Nominal-Inverted, Divided-Divided) ${ }^{(6)}$	-	0.2	0.5	ns
tSkEw3	OutputSkew (Rise-Rise, Fall-Fall, Different Class Outputs) ${ }^{(6)}$	-	0.15	0.5	ns
tSKEW4	OutputSkew (Rise-Fall, Nominal-Divided, Divided-Inverted) ${ }^{(2)}$	-	0.3	0.9	ns
tDev	Device-to-Device Skew ${ }^{(2,7)}$	-	-	0.75	ns
t(p) $1-3$	Static Phase Offset (xFS = L, M, H) (FB Divide-by-n = 1, 2, 3) ${ }^{\text {(8) }}$	-0.3	-	0.3	ns
t(p) ${ }^{\text {ch}}$	Static Phase Offset (xFS = H) ${ }^{(7)}$	-0.5	-	0.5	ns
t(¢) M	Static Phase Offset (xFS = M $)^{(7)}$	-0.7	-	0.7	ns
t(p)L1-6	Static Phase Offset (xFS = L) (xFB Divide-by-n = 1, 2, 3, 4, 5, 6) ${ }^{(8)}$	-0.7	-	0.7	ns
t(\$) 8 - 812	Static Phase Offset (xFS = L) (xFB Divide-by-n $=8,10,12)^{(8)}$	-1	-	1	ns
todev	Output Duty Cycle Variation from 50\%	-1	-	1	ns
tPWH	Output HIGH Time Deviation from 50\% ${ }^{(9)}$	-	-	1.5	ns
tPWL	Output LOW Time Deviation from 50\%(10)	-	-	2	ns
torise	Output Rise Time	0.15	0.7	1.5	ns
tofall	Output Fall Time	0.15	0.7	1.5	ns
tlock	PLL Lock Time ${ }^{(11,12)}$	-	-	0.5	ms
tccur	Cycle-to-Cycle Output Jitter(peak-to-peak) (divide by 1 output frequency, xFS = H, xFB divide-by-n=1,2)	-	-	100	ps
tccuHa	Cycle-to-Cycle Output Jitter(peak-to-peak) (divide by 1 output frequency, xFS $=\mathrm{H}, \mathrm{xFB}$ divide-by-n=any)	-	-	150	
tccum	Cycle-to-Cycle Output Jitter(peak-to-peak) (divide by 1 output frequency, $\mathrm{xFS}=\mathrm{M}$)	-	-	200	
tccol	Cycle-to-Cycle Output Jitter(peak-to-peak) (divide by 1 output frequency, xFS = L, Fref > 3MHz)	-	-	200	
tcCJLA	Cycle-to-Cycle Output Jitter(peak-to-peak) (divide by 1 output frequency, xFS = L, Fref < 3MHz)	-	-	300	

NOTES:

1. Refer to Input Timing Requirements table for more detail.
2. Skew is the time between the earliest and the latest output transition among all outputs for which the same tu delay has been selected when all are loaded with the specified load.
3. tSKEWPR is the skew between a pair of outputs ($\mathrm{xnQ0}$ and $\mathrm{xnQ1}$) when all sixteen outputs are selected for Otu.
4. $\operatorname{tsk}(0)$ is the skew between outputs when they are selected for Otu.
5. tskewb is the skew between outputs (xnQ0 and $\mathrm{xnQ1}$) from A and B banks when they are selected for Otu.
6. There are 3 classes of outputs: Nominal (multiple of tu delay), Inverted (x 4 Q 0 and $\mathrm{x} 4 \mathrm{Q1}$ only with $\mathrm{x} 4 \mathrm{FO}=\mathrm{x} 4 \mathrm{~F} 1=\mathrm{HIGH}$), and Divided ($\mathrm{x} 3 \mathrm{Q} 1: 0$ and $\mathrm{x} 4 \mathrm{Q} 1: 0$ only in Divide-by-2 or Divide-by-4 mode). Test condition: xnF0:1=MM is set on unused outputs.
7. tDEV is the output-to-output skew between any two devices operating under the same conditions (VDDQ, VDD, ambient temperature, air flow, etc.)
8. $t \phi$ is measured with REF input rise and fall times (from 0.7 V to 1.7 V) of 0.5 ns. Measured from 1.25 V on REF to 1.25 V on xFB .
9. Measured at 1.7 V .
10. Measured at 0.7 V .
11. tlock is the time that is required before synchronization is achieved. This specification is valid only after VDD/VDDQ is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or $x F B$ until tPD is within specified limits.
12. Lock detector may be unreliable for input frequencies less than approximately 4 MHz , or for input signals which contain significant jitter.

AC TEST LOADS AND WAVEFORMS

For LOCK output
For all other outputs

2.5V Output Waveform

LVTTL Input Test Waveform

AC TIMING DIAGRAM

NOTES:
PE: The AC Timing Diagram applies to $P E=V D D$. For $P E=G N D$, the negative edge of $F B$ aligns with the negative edge of $R E F$, divided outputs change on the negative edge of REF, and the positive edges of the divide-by-2 and the divide-by-4 signals align.
Skew: The time between the earliest and the latest output transition among all outputs for which the same to delay has been selected when all are loaded with 20pF and terminated with 75Ω to $\mathrm{VDDQ} / 2$.
tskewpr: The skew between a pair of outputs (xnQ 0 and xnQ_{1}) when all eight outputs are selected for Otu.
tSkewb: The skew between outputs (xnQ_{0} and xnQ_{1}) from A and B banks when they are selected for Otu.
tskewo: The skew between outputs when they are selected for Otu.
tDEv: The output-to-output skew between any two devices operating under the same conditions (VDDQ, VDD, ambient temperature, air flow, etc.)
todcv: The deviation of the output from a 50% duty cycle. Output pulse width variations are included in tskew2 and tskew4 specifications.
tpwh is measured at 1.7 V .
tPWL is measured at 0.7 V .
torise and tofall are measured between 0.7 V and 1.7 V .
tlock: The time that is required before synchronization is achieved. This specification is valid only after VdD/VDDQ is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tpD is within specified limits.

ORDERINGINFORMATION

IDT $\frac{X X X X X}{\text { Device Type }} \frac{X X}{\text { Package }} \quad \frac{X}{\text { Package }}$

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial)

Fine Pitch Ball Grid Array
2.5V Programmable Skew Dual PLL Clock Driver TurboClock W
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
uww.idt.com
for Tech Support:
(408) 654-6459

